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Abstract
Given a bundle gerbe with connection on an oriented Riemannian manifold of
dimension at least equal to 3, we formulate and study the associated Yang–
Mills equations. When the Riemannian manifold is compact and oriented, we
prove the existence of instanton solutions to the equations and also determine
the moduli space of instantons, thus giving a complete analysis in this case.
We also discuss duality in this context.

PACS numbers: 02.40.Ma, 02.40.Vh, 03.50.De
Mathematics Subject Classification: 70S15, 81T13

Introduction

The Yang–Mills equations for a line bundle on a Riemannian manifold, otherwise known
as Abelian Yang–Mills equations, are an elegant reformulation of Maxwell’s equations for
electromagnetism on a general Riemannian manifold X. It has been extensively studied in
physics, and a nice account of it from a mathematician’s perspective can be found in [1].
Just as line bundles are classified up to isomorphism by H 2(X, Z), it is known that bundle
gerbes, which were invented in [5], are classified up to stable isomorphism by H 3(X, Z) [6].
It is natural to ask whether there is an analogue of Yang–Mills theory for bundle gerbes on
Riemannian manifolds?

In section 1, we formulate and study the analogue of the Yang–Mills equations for bundle
gerbes with connection on Riemannian manifolds X of dimension at least equal to 3. When X
is a compact oriented Riemannian manifold, we prove in section 2 the existence of instanton
solutions to these equations and in corollary 2 we establish that the moduli space of instanton
solutions is isomorphic to a torus T

b2(X) of dimension equal to the second Betti number of
X, thus giving a complete analysis in this case. Moreover, if we allow the bundle gerbe
connection on the bundle gerbe to vary and if A denotes the affine space of all bundle gerbe
connections on the given bundle gerbe, then in corollary 3 we deduce that the moduli space of
instantons is a fibre bundle over A with fibres isomorphic to the torus T

b2(X). We also discuss
duality in our context, and in corollary 1 we give a new geometric interpretation of the de
Rham cohomology group H 2(X, R).
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In future research, we plan to generalize our results to n-bundle gerbes, n > 1, and also
to non-Abelian bundle gerbes. We mention that there have been other approaches to ‘higher’
versions of Yang–Mills theory [2, 3 and references there in], which use (higher) category
theory and so are rather different from our pedestrian geometric approach in this paper.

1. Preliminaries

1.1. Bundle gerbes and bundle gerbe connections

The material in this section is a very brief review of bundle gerbes. For details, we refer the
reader to [5, 6].

Let (M,L) be a bundle gerbe over compact oriented manifold X. That is, M
π→ X

is a submersion and L → M [2] is a primitive line bundle over the fibred product M [2] =
�∗(M × M) where � : X → X × X is the diagonal map, x �→ (x, x). We recall that a
primitive line bundle is one that comes equipped with isomorphisms,

L(x,y) ⊗ L(y,z)
∼= L(x,z), (1)

for all x, y, z ∈ M , called the bundle gerbe product.
Recall from [5] that for any fixed p � 0, we have an exact complex

�p(X)
π∗→ �p(M)

δ→ �p(M [2])
δ→ · · · . (2)

Here δ: �p(M [q]) → �p(M [q+1]) is the alternating sum of pull-backs
∑q+1

j=1(−1)jπ∗
j of

projections, where πi is the projection map which omits the ith point in the fibre product, and
M [q] denotes the qth fibred product.

We will always assume that M [2] admits partitions of unity, in which case L → M [2]

admits connections. It is then shown in [5] that L admits bundle gerbe connections that is
connections respecting the bundle gerbe product. A bundle gerbe connection ∇ has curvature
F∇ satisfying δ(F∇) = 0 and hence from the exactness of the fundamental complex (2) there
exists a 2-form f on M, satisfying the ‘descent equation’

F∇ = π∗
1 (f ) − π∗

2 (f ).

Such an f is called a curving for the connection ∇. Let C = C(M,L,∇) denote the space
of all curvings for the connection ∇. Then C is an affine space associated with the vector
space �2(X). To see this, observe that if f1, f2 ∈ C, then 0 = π∗

1 (f1 − f2) − π∗
2 (f1 − f2) =

δ(f1 −f2). Therefore, by the exactness of the fundamental complex, f1 −f2 = δ(λ) = π∗(λ)

where λ ∈ �2(X). Note that C actually only depends on the curvature F∇ . Given a choice
of curving, we then have that δ(df ) = dδ(f ) = dF∇ = 0 so that by the exactness of the
fundamental complex (2) we can find a 3-form H(f ) on X, such that df = δ(H(f )) =
π∗(H(f )). Moreover, H(f ) is closed as π∗(dH(f )) = ddf = 0. In [5], it is shown that
H(f )/2π i has integral periods is a de Rham representative for the Dixmier–Douady class.
Here H(f ) is called the 3-curvature of the connection and curving (∇, f ). It is shown
in [5] that the cohomology class [H(f )/2π i] ∈ H 3(X, Z) is independent of the choice of
curving f .

2. Yang–Mills functional for bundle gerbes, critical points and duality

The configuration space for the Yang–Mills functional for the bundle gerbe (M,L) is defined
as the space of all curvings C = C(M,L,∇) for the bundle gerbe connection ∇ on (M,L). We
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define the Yang–Mills functional for the bundle gerbe (M,L) with bundle gerbe connection
∇ as

YM: C → R,

YM(f ) =
∫

X

H(f ) ∧ ∗H(f ),
(3)

where * denotes the Hodge star operator, with respect to the given Riemannian metric on
X. Note that the compactness of X is used here to ensure that the integral is finite. The
Euler–Lagrange equations are then derived in the standard way,

YM(f + εh) − YM(f ) = 2ε

∫
X

H(h) ∧ ∗H(f ) + O(ε2), (4)

for all h ∈ C. Therefore, d∗H(f ) = 0, where d∗ denotes the formal adjoint of the de Rham
operator d. But we always have dH(f ) = 0, so we conclude that the critical points of the
Yang–Mills functional YM for bundle gerbes satisfy the following Yang–Mills equations for
bundle gerbes:

dH(f ) = 0, d∗H(f ) = 0. (5)

Note that these equations continue to make sense for noncompact Riemannian manifolds.

2.1. Duality

Note that since d∗ = ± ∗ d∗ and ∗2 = ±1 or ±i, we see that the Yang–Mills equations for
bundle gerbes (5) are invariant under the transformation H �→ ∗H , which is the analogue of
the electromagnetic duality for Abelian Yang–Mills.

2.2. Gauge group for bundle gerbes and its action

Define the gauge group G = G(X,L) to be C∞(X, PU), where PU = U/T is the projective
unitary group on an infinite-dimensional, separable Hilbert space. Then G acts on C via

γ · f = f + π∗γ ∗(ω),

where ω ∈ �2(PU) is a closed 2-form such that [ω] ∈ H 2(PU, Z) is the generator, γ ∈ G and
f ∈ C. In fact, we will make a particular choice of ω, which is primitive. More precisely,
recall that the line bundle L associated with the central extension T → U → PU is primitive
in the sense that there are canonical isomorphisms Lg ⊗Lh

∼= Lgh for all g, h ∈ PU, and there
is a connection ∇, on the line bundle L, called a primitive connection, which is compatible
with these isomorphisms. If ω is the curvature of such a primitive connection ∇, then we see
that ωg + ωh = ωgh for all g, h ∈ PU, and ω is said to be a primitive closed 2-form on PU.
Suppose now η, γ ∈ G and x ∈ X. Then, denoting the pointwise product of η and γ as ηγ ,
we have

((ηγ )∗ω)x = ωη(x)γ (x)

= ωη(x) + ωγ(x)

= (η∗ω)x + (γ ∗ω)x.

Thus, (ηγ )∗ω = γ ∗ω + η∗ω. The action of the gauge group G on C can now be seen to be
well defined, namely

(ηγ ) · f = (f + π∗γ ∗ω) + π∗η∗ω = η · (γ · f )

for all f ∈ C.
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Observe that d(γ · f ) = df for all γ ∈ G and f ∈ C, i.e.

H(γ · f ) = H(f ).

In particular, YM (γ · f ) = YM (f ), i.e.

YM: C/G → R,

is a well-defined Morse (quadratic) function on C/G.

Remark 1. Instead of the group PU, we could have chosen any other differentiable group G
such that G is an Eilenberg–Maclane space K(Z, 2) = BU(1). For instance, G can be even
chosen to be an Abelian group which is a differentiable space, cf [4], which is a weak form of
smooth structure for infinite-dimensional spaces.

3. Existence of (instanton) solutions and moduli space

3.1. Existence

Since X is a compact oriented manifold, by the Hodge theorem, cf [8], which states that every
cohomology class on a compact oriented manifold has a unique harmonic representative, there
is a unique 3-curvature (instanton) solution to the Yang–Mills equations for bundle gerbes (5).

3.2. Moduli space

Our next goal is to determine the space of all (instanton) solutions to these equations and also
the moduli space of gauge equivalent (instanton) solutions to the equations. That is, we want
to analyse the set of all f ∈ C such that H(f ) = H(f0) for some fixed f0 ∈ C. That is,
d(f − f0) = 0. Since we always have f − f0 ∈ �2(X), we see that the difference f − f0 is a
closed 2-form, f − f0 ∈ Z2(X), where Z2(X) denotes the vector space of all closed 2-forms
on X. Now the induced action of G on Z2(X) is γ · ξ = ξ + γ ∗ω, where γ ∈ G, ξ ∈ Z2(X) and
ω is as in section 2.2. Consider the subgroup G0 of G consisting of all smooth maps X �→ PU
that are null homotopic. Then we have

Proposition 1. Let B2(X) denote the space of all exact 2-forms on X. For all γ ∈ G0,
the pull-back γ ∗ω ∈ B2(X), where ω is a primitive closed 2-form on PU such that
[ω] ∈ H 2(PU, Z) ∼= Z is the generator. Moreover, for any exact 2-form F ∈ B2(X), there is
a γ ∈ G0 such that F = γ ∗ω.

Proof. For γ ∈ G0, by the homotopy invariance of de Rham cohomology, [γ ∗ω] = 0, therefore
γ ∗ω ∈ B2(X). An alternate proof is given as follows. Note that any γ ∈ G0 lifts to a smooth
map γ̃ : X → U where U denotes the unitary group of the given Hilbert space. That is, we
have the commutative diagram

(6)

Since U is contractible, there is a 1-form � ∈ �1(U) such that π∗(ω) = d�. By the
commutativity of diagram (6), we have γ ∗(ω) = dγ̃ ∗(�), that is, γ ∗(ω) ∈ B2(X).

Conversely, given F ∈ B2(X), we need to show that there is a smooth map h : X → U

such that F = dh∗(�) where � ∈ �1(U) is such that π∗(ω) = d�. Then the composition
γ = π ◦ h ∈ G0 has the property that F = γ ∗ω, as desired. But, by the theory of universal
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connections, cf [7], there is a smooth map h0 : X → S, where S denotes the unit sphere in the
given Hilbert space such that F = dh0

∗(�0) where �0 ∈ �1(S) is the universal connection,
having the property that π̄∗(ω0) = d�0, where ω0 ∈ �2(P ) denotes the universal curvature
2-form on the projectivized Hilbert space P , where π̄ : S → P is the circle bundle. Pick a
point x0 ∈ S. Then there is a map q : U → S, which sends a unitary operator T to the point
T (x0) on the unit sphere. Since S and U are contractible, there is a lift h : X → U of h0.
That is, we have the commutative diagram

(7)

Define � = q∗(�0). Then by the commutativity of diagram (7), we see that F = dh∗(�) as
desired. The particular choice of ω that we make is ω = q̄∗(ω0), where q̄: PU → P is the
map induced by q, i.e. such that the following diagram commutes:

(8)

�

The following corollary can be viewed as giving a new geometric interpretation of the
cohomology group H 2(X, R).

Corollary 1. Let M0
∇ denote the moduli space of null homotopic gauge equivalent (instanton)

solutions to the Yang–Mills equations for the bundle gerbe (M,L) with connection ∇ over a
compact oriented manifold X. Then M0

∇ is isomorphic to the cohomology group H 2(X, R).

Proof. By definition, M0
∇ = Z2(X)/G0. By proposition 1, the quotient Z2(X)/G0 =

H 2(X, R), proving the corollary. �

Corollary 2. Let M∇ denote the moduli space of gauge equivalent (instanton) solutions to the
Yang–Mills equations for the bundle gerbe (M,L) with connection ∇ over a compact oriented
manifold X. Then M∇ is diffeomorphic to the torus T

b2(X) of dimension equal to the second
Betti number of X.

Proof. By proposition 1, the quotient Z2(X)/G0 = H 2(X, R). Also, since PU is an
Eilenberg–Maclane space K(Z, 2), we see that the group of components of the gauge group
is π0(G) = G/G0 = [X, PU] = H 2(X, Z). �

Therefore,

M∇ = Z2(X)/G,

= (Z2(X)/G0)/(G/G0),

= H 2(X, R)/π0(G),

= H 2(X, R)/H 2(X, Z),

∼= T
b2(X).

(9)
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It has been shown in [5] that the space A of all bundle gerbe connections on the bundle
gerbe (M,L) over X is an affine space associated with the vector space �1(M)/π∗(�1(X)).
Therefore, we have the following corollary.

Corollary 3. Let M = ⋃
∇∈A M∇ denote the moduli space of gauge equivalent (instanton)

solutions to the Yang–Mills equations for the bundle gerbe (M,L) over a compact oriented
manifold X. Then M is diffeomorphic to a torus bundle over the affine space A with fibre
isomorphic to the torus T

b2(X) of dimension equal to the second Betti number of X.
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